ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE PIERRE NDIAYE – DAKAR ÉCOLE NATIONALE D'ÉCONOMIE APPLIQUÉE ET DE MANAGEMENT ENEAM – COTONOU

AVRIL 2023

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

2ème COMPOSITION DE MATHÉMATIQUES (Durée de l'épreuve : 4 heures)

Dans toute cette épreuve, N désigne l'ensemble des entiers naturels, R l'ensemble des nombres réels, e le nombre de Néper et Ln le logarithme népérien.

Exercice nº 1

Soit f la fonction réelle définie par : $f(x) = \frac{1}{1+x+x^2}$.

- 1. Donner un développement limité d'ordre 4 de f en 0.
- 2. Etudier les variations de f, ainsi que sa convexité et tracer son graphe.
- 3. La fonction f admet-elle un centre de symétrie ? un axe de symétrie ?
- 4. Calculer $I = \int_0^1 f(x) dx$.

Exercice n° 2

On considère la fonction réelle f définie par : $f(x) = Ln(x^2 - 5x + 6)$.

- 1. Résoudre l'équation : f(x) = 0.
- 2. Etudier les variations de f et donner l'allure de son graphe.
- 3. Calculer $I = \int_0^1 f(x) dx$.

Exercice n° 3

Soit la fonction réelle f définie sur les réels positifs par : $f(x) = \begin{cases} x^2 E\left(\frac{1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$, où E(x) désigne la partie entière du nombre réel x.

- 1. Etudier la continuité de f sur R^+ .
- 2. Etudier la dérivabilité de f sur R^+ .
- 3. Calculer $I = \int_{\frac{1}{3}}^{1} f(x) dx$.

Exercice n° 4

On note E l'ensemble des matrices carrées d'ordre n à coefficients réels. Autres notations :

 $O_n(R)$ l'ensemble des matrices orthogonales de E,

 $D_n(R)$ l'ensemble des matrices de E, diagonalisables dans R, et

 $S_n(R) = \{ M = (a_{i j}) \in E / a_{i j} \ge 0 , \sum_{j=1}^n a_{i j} = 1 \}$ (Les matrices de cet ensemble s'appellent stochastiques).

- 1. L'ensemble $O_n(R)$ est-il convexe dans E?
- 2. L'ensemble $D_n(R)$ est-il convexe dans E?
- 3. L'ensemble $S_n(R)$ est-il convexe dans E?
- 4. Soit la matrice $M = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 3/8 & 3/8 \\ 1/4 & 3/8 & 3/8 \end{pmatrix}$. Déterminer les valeurs propres et une base de vecteurs propres de cette matrice M.
- 5. Montrer que toutes les matrices de l'ensemble $S_n(R)$ admettent une même valeur propre quel que soit n>1.

Exercice n° 5

On note $M_n(R)$ l'espace des matrices carrées d'ordre n à coefficients réels. On rappelle qu'une matrice $A \in M_n(R)$ est nilpotente si et seulement si $\exists p \in N^* / A^p = 0$ (le plus petit p s'appelle l'indice nilpotent).

- 1. Si A est une matrice nilpotente, montrer que $I_n A$ est inversible et donner son inverse.
- 2. Soit A est une matrice nilpotente, montrer que toutes ses valeurs propres sont nulles et déterminer son polynôme caractéristique.

2

3. Soit A est une matrice nilpotente, montrer que : $\forall k = 1, 2, ... n$, $Tr(A^k) = 0$, où Tr désigne la trace. On rappelle que la trace d'une matrice est la somme des éléments de sa diagonale.

4. Soit
$$A = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}$$
, calculer $A^n, \forall n \ge 1$.

5. Pour $A, B \in M_n(R)$ vérifiant AB = BA, où A est inversible et B nilpotente. Comparer det(A + B) et det(A).

Exercice nº 6

On note $M_n(R)$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. Soit φ l'application définie sur $M_n(R) \times M_n(R)$ par $\varphi(A,B) = Tr(A'B)$ où Tr désigne la trace et A' la transposée de la matrice A.

- 1. Vérifier que φ est une forme bilinéaire.
- 2. φ est-elle symétrique ? Définie positive ?
- 3. Déterminer la matrice M de φ dans la base canonique de $M_2(R)$.

4. Soit la matrice
$$B = \begin{pmatrix} 0 & 1/4 & 1/8 & 1/8 \\ 1/4 & 0 & 1/8 & 1/8 \\ 1/8 & 1/8 & 0 & 1/4 \\ 1/8 & 1/8 & 1/4 & 0 \end{pmatrix}$$
 et la matrice $N = B + \frac{1}{2}I$ (où I est la

matrice unité d'ordre 4). Etudier la diagonalisation de N (on précisera ses valeurs propres).