BACCALAURÉAT GÉNÉRAL

Session 2010

MATHÉMATIQUES

Série S

Enseignement de Spécialité

Durée de l'épreuve : 4 heures - Coefficient : 9

Ce sujet comporte 6 pages numérotées de 1 à 6.

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter les quatre exercices.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

10MASSAN1 Page 1/6

Exercice 1 (4 points)

L'espace est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j}, \vec{k})$.

Les points A, B et C ont pour coordonnées respectives : A(1,-2,4) B(-2,-6,5) C(-4,0,-3).

- 1. a) Démontrer que les points A, B et C ne sont pas alignés.
 - b) Démontrer que le vecteur $\vec{n}(1,-1,-1)$ est un vecteur normal au plan (ABC).
 - c) Déterminer une équation du plan (ABC).
- a) Déterminer une représentation paramétrique de la droite passant par le point O et orthogonale au plan (ABC).
 - b) Déterminer les coordonnées du point O', projeté orthogonal du point O sur le plan (ABC).
- 3. On désigne par H le projeté orthogonal du point O sur la droite (BC).

Soit t le réel tel que $\overline{BH} = t\overline{BC}$.

- a) Démontrer que $t = \frac{\overrightarrow{BO} \cdot \overrightarrow{BC}}{\left\| \overrightarrow{BC} \right\|^2}$.
- b) En déduire le réel t et les coordonnées du point H.

Exercice 2 (3 points)

Une urne contient des boules indiscernables au toucher.

20 % des boules portent le numéro 1 et sont rouges.

Les autres portent le numéro 2 et parmi elles, 10 % sont rouges et les autres sont vertes.

- 1. On tire une boule au hasard. Quelle est la probabilité qu'elle soit rouge?
- 2. On a tiré une boule au hasard. Elle est rouge.

Montrer que la probabilité qu'elle porte le numéro 2 est égale à $\frac{2}{7}$.

3. Soit *n* un entier naturel supérieur ou égal à 2.

On effectue *n* tirages successifs d'une boule avec remise (après chaque tirage la boule est remise dans l'urne).

- a) Exprimer en fonction de n la probabilité d'obtenir au moins une boule rouge portant le numéro 1 au cours des n tirages.
- b) Déterminer l'entier *n* à partir duquel la probabilité d'obtenir au moins une boule rouge portant le numéro 1 au cours des *n* tirages est supérieure ou égale à 0,99.

10MASSAN1 Page 3/6

Exercice 3 (5 points)

Partie A

On cherche l'ensemble des couples d'entiers relatifs (x, y) solutions de l'équation (E): 16x - 3y = 4.

- 1. Vérifier que le couple (1,4) est une solution particulière de (E).
- 2. Déterminer l'ensemble des couples d'entiers relatifs solutions de l'équation (E).

Partie B

Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$.

On considère la transformation f du plan, qui à tout point M d'affixe z, associe le point M' d'affixe z' définie par $z'=\sqrt{2}\,\mathrm{e}^{\frac{3\,\mathrm{i}\,\pi}{8}}z$.

On définit une suite de points (M_n) de la manière suivante :

le point M_0 a pour affixe $z_0 = i$ et pour tout entier naturel n, $M_{n+1} = f(M_n)$.

On note z_n l'affixe du point M_n .

Les points M_0 , M_1 , M_2 et M_3 sont placés sur la figure donnée en annexe page 6.

- 1. Déterminer la nature et les éléments caractéristiques de la transformation f.
- 2. On note g la transformation $f \circ f \circ f \circ f$.
 - a) Déterminer la nature et les éléments caractéristiques de la transformation $\,g\,.\,$
 - b) En déduire que pour tout entier naturel n, $OM_{n+4} = 4OM_n$ et que $\left(\overline{OM_n}, \overline{OM_{n+4}}\right) = -\frac{\pi}{2} + k \times 2\pi$ où k est un entier relatif.
 - c) Compléter la figure en construisant les points $\,\mathrm{M_4}\,,\,\,\mathrm{M_5}$ et $\,\mathrm{M_6}\,.$
- 3. Démontrer que pour tout entier naturel n, $z_n = \left(\sqrt{2}\right)^n e^{i\left(\frac{\pi}{2} + \frac{3n\pi}{8}\right)}$.
- 4. Soient deux entiers naturels n et p tels que $p \le n$.
 - a) Exprimer en fonction de n et p une mesure de $(\overrightarrow{OM_p}, \overrightarrow{OM_n})$.
 - b) Démontrer que les points O, M_p et M_n sont alignés si et seulement si n-p est un multiple de 8.
- 5. Déterminer l'ensemble des entiers naturels n tels que le point M_n appartienne à la demi-droite [Ox). On pourra utiliser la partie A.

Exercice 4 (8 points)

À tout entier naturel n non nul, on associe la fonction f_n définie sur \mathbf{R} par

$$f_n(x) = \frac{4e^{nx}}{e^{nx} + 7}.$$

On désigne par C_n la courbe représentative de la fonction f_n dans un repère orthonormal $(0; \vec{i}, \vec{j})$. Les courbes C_1 , C_2 et C_3 sont données en annexe page 6.

Partie A : Étude de la fonction f_1 définie sur **R** par $f_1(x) = \frac{4e^x}{e^x + 7}$.

- 1. Vérifier que pour tout réel x, $f_1(x) = \frac{4}{1+7e^{-x}}$.
- 2. a) Démontrer que la courbe C₁ admet deux asymptotes dont on précisera des équations.
 - b) Démontrer que la fonction f_1 est strictement croissante sur \mathbf{R} .
 - c) Démontrer que pour tout réel x, $0 < f_1(x) < 4$.
- 3. a) Démontrer que le point I_1 de coordonnées $(\ln 7, 2)$ est un centre de symétrie de la courbe C_1 .
 - b) Déterminer une équation de la tangente (T_1) à la courbe C_1 au point I_1 .
 - c) Tracer la droite (T₁).
- 4. a) Déterminer une primitive de la fonction f_1 sur \mathbf{R} .
 - b) Calculer la valeur moyenne de f_1 sur l'intervalle $[0, \ln 7]$.

Partie B : Étude de certaines propriétés de la fonction f_n .

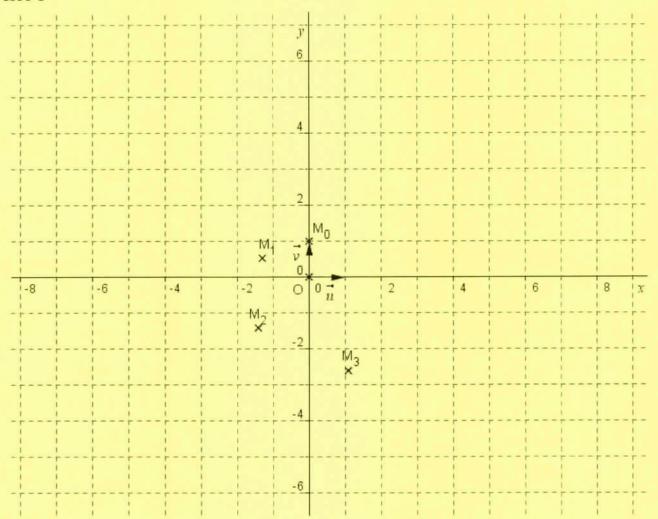
- 1. Démontrer que pour tout entier naturel n non nul le point $A\left(0,\frac{1}{2}\right)$ appartient à la courbe C_n .
- 2. a) Démontrer que pour tout entier naturel n non nul la courbe C_n et la droite d'équation y = 2 ont un unique point d'intersection dont on précisera l'abscisse.
 - On note I_n ce point d'intersection.
 - b) Déterminer une équation de la tangente (T_n) à la courbe C_n au point I_n .
 - c) Tracer les droites (T_2) et (T_3) .
- 3. Soit la suite (u_n) définie pour tout entier naturel n non nul par $u_n = \frac{n}{\ln 7} \int_0^{\frac{\ln 7}{n}} f_n(x) dx$.

Montrer que la suite (u_n) est constante.

ANNEXE

Cette page sera complétée et remise avec la copie à la fin de l'épreuve.

Exercice 3



Exercice 4

