EXERCICE 2: (6 points)

Commun à tous les candidats

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = \ln(1 + xe^{-x})$.

On note f' la fonction dérivée de la fonction f sur l'intervalle $[0; +\infty[$.

On note $\mathscr C$ la courbe représentative de la fonction f dans un repère orthogonal. La courbe $\mathscr C$ est représentée en annexe 1 (à rendre avec la copie).

PARTIE I

- 1) Justifier que $\lim_{x\to +\infty} f(x) = 0$.
- 2) Justifier que pour tout nombre réel positif x, le signe de f'(x) est celui de 1-x.
- 3) Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.

PARTIE II

Soit λ un nombre réel strictement positif. On pose $A(\lambda) = \int_0^{\lambda} f(x) dx$.

On se propose de majorer $A(\lambda)$ à l'aide de deux méthodes différentes.

1) Première méthode.

- a) Représenter, sur l'annexe jointe (à rendre avec la copie), la partie du plan dont l'aire en unité d'aire, est égale à $A(\lambda)$.
- **b)** Justifier que pour tout nombre réel λ strictement positif, $A(\lambda) \leq \lambda \times f(1)$.

2) Deuxième méthode.

- a) Calculer à l'aide d'une intégration par parties $\int_0^{\lambda} xe^{-x} dx$ en fonction de λ .
- b) On admet que pour tout nombre réel positif u, $\ln(1+u) \le u$. Démontrer alors que, pour tout nombre réel λ strictement positif, $A(\lambda) \le -\lambda e^{-\lambda} - e^{-\lambda} + 1$.

3) Application numérique.

Avec chacune des deux méthodes, trouver un majorant de A(5), arrondi au centième. Quelle méthode donne le meilleur majorant dans le cas où $\lambda = 5$?

ANNEXE 1 Exercice 2

(À rendre avec la copie)

